دپارتمان مهندسی مکانیک ایران

انجمن مهندسی مکانیک

انجمن تست های غیر مخرب

انجمن علمی مهندسی پزشکی

انجمن بیومکانیک

آموزش تعمیر تجهیزات پزشکی

آموزش تعمیرات تجهیزات پزشکی

دوره های مهندسی پزشکی

دوره های آموزشی مهندسی پزشکی

انجمن مهندسی پزشکی

آموزش تعمیر تجهیزات دندانپزشکی

آموزش بازرسی جوش

آموزش پایپینگ


             

A new BRB based method to establish hidden failure prognosis model by using life data and monitoring observation

Abstract

It is important to predict the hidden failure of a complex engineering system. In the current methods for establishing the failure prognosis model, the qualitative knowledge and quantitative information (life data and monitoring observation) cannot be used effectively and simultaneously. In order to predict the hidden failure by using the qualitative knowledge, life data and monitoring observation, a new model for hidden failure prognosis is proposed on the basis of belief rule base (BRB). In the newly proposed model, there are some unknown parameters whose initial values are usually given by experts and may not be accuracy, which may lead to the inaccuracy prediction. In order to tune the parameters of the failure prognosis model according to the life data and monitoring observation, an optimal algorithm for training the parameters is further developed on the basis of maximum likelihood (ML) algorithm. The proposed model and optimal algorithm can operate together in an integrated manner to improve the precision of failure prognosis by using the qualitative knowledge and quantitative information effectively. A case study is examined to demonstrate the ability and potential applications of the newly proposed failure prognosis model.

Keywords

  • Failure prognosis;
  • Life data;
  • Monitoring observation;
  • Qualitative knowledge;
  • Belief rule base (BRB)

دانلود مقاله کامل -- ویژه اعضای طلایی

alt

جهت اطلاع از نحوه ارتقا عضویت طلایی به

آپشن اعضای طلایی مراجعه فرمایید

 

کتابخانه دیجیتال دپارتمان

سامانه هوشمند ژورنال مقالات